2012 Advanced Space Propulsion Workshop

FFRE Powered Spacecraft

28November 2012

Robert O. Werka, Pl, MSFC EV72, NIAC Fellow

Rod Clark, Grassmere Dynamics

Dr. Rob Sheldon, FFRE Consultant

Tom Percy, MSFC ED04, SAIC

What is MAC?

NASA Innovative Advanced Concepts

A program to support early studies of innovative, yet credible visionary concepts that could one day "change the possible" in aerospace

Exploration Technology Today An Analogy

Exploration Technology Today An Analogy

Exploration Technology Today

An Analogy

Staging

Burnout

Exploration Technology Today

Why Would You Want To Explore Like This?

Because
That's The
Best We
Can Do
Now

The Reason Why And An Answer

Viewpoint

A FISSION FRAGMENT ROCKET ENGINE:

REAL **ESTATE** IN **FREQUENCY** SPACE

The ephemeral

New technologies with the promise of more affordable, more efficient,

and safer propulsion for space launch currently seem to be out of

that we should stop searching

24 A EROSPACE A MERICA/MARCH 201

".... All in all, the near-tomedium reach. That however, does not mean prospects for applying 'advanced propulsion'to create a new era of space exploration are not very good."

Engine Attributes:

- > Far Less Propellant Than Chemical Or Nuclear Thermal $(I_{sp} \sim 500,000s)$
- > Far More Efficient Than **Nuclear Electric (100X Thrust)**
- > Far Safer Than Nuclear Thermal (Charge Reactor In **Orbit, Radiation Leaves Solar** System At >1% Light Speed)

Spacecraft Impact:

- > More Payload
- > Faster Travel
- Unlimited Electrical Power
- > Enhanced Astronaut Safety

Principles of FFRE

- □ Reactor Core Uses Submicron Uranium Dust Grains
- ☐ Fissioning Low-Density Dust Is Radiatively Cooled.
- Moderator Reflects Neutrons To Keep Dust Critical
- Carbon-Carbon Heat Shield Reflects IR Away From The Moderator.
- □ Superconducting Magnets Direct FFs Out Of Reactor.
- Electricity Is Generated From Heat Shield Coolant
- ☐ Reactor Hole Provides: Heat Escape, FF Escape At 1.7% Light-Speed

)

FFRE History

Original Spinning Brush FFRE

1986: George Chapline's "Spinning Brush" FFRE: Uranium coated carbon fiber permits half the fission fragments to escape, providing thrust. The other half heats up so fibers rotated out of reactor to cool.

Dusty Plasma FFRE Creation

2005: Dr. Rod Clark creates "Dusty Plasma" FFRE: Fissioning uranium dust maximizes both fission fragment escape and radiative cooling, increasing efficiency and permitting reactor operation at Gigawatts of power.

Grassmere Dynamics, LLC

- Engineering & Consulting
- 40 Years Of Combined Experience In Engineering Design, Materials, Testing & Quality Assurance.
- Specialty Modeling Skills:
 - Computational Fluid Dynamics (CFD)
 - Magneto Hydrodynamic Plasma (MHD)
 - Nuclear (Radiation, Reactor Design & Performance)
 - Optical

3D Simulation Of Tokomak Nuclear Fusion Reactor Magnetically Confined Plasma Using Grassmere Code

Study Approach

Study Groundrules

FFRE Design Status

Base FFRE Design

Master Equip List Mass incl 30% MGA		Distribution	(MW)
FFRE System Total, mT	113,4	Total Reactor Power	1,000
FFRE System Total, IIII	113.4	Neutrons (30% to FFRI	E) 24.2
Nozzle	6.4	Gammas (5% to FFRI	95.6
Magnetic Mirror	28.6	Oth	er 70.2
Exit Field Coil	11.1	Thermal (IF	R) 699
Moderator	51.2	Jet Power 111	
Moderator Heat Shield	0.1	Performance	
Control Drum System	0.7	Thrust	43 N (9.7 lbf)
Electrostatic Collector	0.3	Exit Velocity	5170 km/s
Dust Injector	7.2	Specific Impulse	527,000 s
Shadow Shield	7.8	Mass Flow	0.008 gm/s

Revised FFRE Designs

Attributes: Generation 1 Ellipsoid **Superconducting Field Coils** Moderator and IR Moderator **Guide Escaping Fission Radiation Shield** Ring Magnets **Fragments Assessment:** Reduced heat load so less Spacecraft radiator mass Dustv **Complex Shape** Plasma **Thrust Produced When Fission** Reactor Moderator Fragments Exit In Beam Core Thrust & I_{sn} unchanged

Superconducting

Field Coils

Dusty Plasma 🗸

Reactor Core

Generation 2

Benefit of When Fig. 20

Attributes:

Dual Paraboloid Moderator Ring Magnets

Assessment:

- Reduced heat load so less Spacecraft radiator mass
- Complex shape moderator, difficult to support & cool, weighs more
- I_{sp} unchanged (527,000 s)

Thrust: 2X (86 N, 19 lbf)

13

Moderator and IR

Radiation Shield

Spacecraft Concept Overview

Spacecraft/Typical SLS Packaging Advanced

Spacecraft Performance

(First FFRE / Spacecraft Assessment)

Intitial FFRE Propelled Spacecraft Mission Performance 1st Generation FFRE: 43 N Thrust 527.000s I_{sp} Spacecraft is acceleration limited

Outbound	Segment	Thrust Time	CUM Nuclear
Trajectory Results	Time (Days)	(Days)	Prop (Kg)
Earth Spiral — Out	55	55	40
Interplanetary	2,106	2,161	1,553
Jupiter Spiral — In	503	2,665	1,915
_		000 B	

Stay Time at Callisto: ~330 Days

Total Elapsed Mission Time	5,850 Days (16.0 Years)	
Total Nuclear Fuel Used	4 mT	

Performance Trades

Effect on Mission Of 2nd Generation FFRE Design

FFRE

- ☐ Thrust: 2X (86N)
- ☐ I_{sp}: 527,000s

Spacecraft

☐ Assumed no change (conservative)

Mission

- □ ~8 years round trip
- ☐ Spiral out and in times halved
- ☐ Small coast period in interplanetary flight
- ☐ Propellant: ~4 mT nuclear

Effect on Mission Of Adding an "Afterburner " to FFRE Design

FFRE

- ☐ Fission fragments accelerate an inert gas added to nozzle via friction, adding thrust & decreasing specific impulse
- ☐ Thrust: 430N, I_{sp}: 52,700s (notional)

Spacecraft

☐ Added "propellant" and tankage

Mission

- □ ~6 years round trip
- ☐ From Earth: 4 days, Into Jupiter: 40 days
- ☐ Interplanetary Coast: 950days
- ☐ Propellant: 0.3mT nuclear, 22mT gas

Spacecraft Comparison

Vehicle	HOPE	FFRE
Payload (Crew/Science Equip) (mT)	60	60
Total Mass (mT)	890	303
Dry Mass (mT)	460	295
Propellant Mass (mT)	400	4
Overall Length (m)	243	120
Overall Span (m)	42	62
Total Radiator Area (m²)	3498	6,076
Performance	HOPE	FFRE
Total Power (MW)	34	1,000
Thrust (lbf)	126	9.7
I _{SP} (s)	8,000	527,000
Vehicle Acceleration (g)	14e-4	3e-4
Outbound Trip Time (days)	833	2,665
Return Trip Time (days)	693	2,854
Total Mission (years)	HOPE 4.5yrs?	8-16 yrs

What Is Learned So Far

- □ A FFRE is <u>credible</u> ordinary engineering, ordinary physics. NO MIRACLES.
- □ A FFRE-propelled spacecraft is game changing to travel in space. A spacecraft with a heavy payload can depart for and return from many solar system destinations. NO REASSEMBLY REQUIRED.
- □ Our first constructs of a FFRE are grossly inefficient. We are like a Ford Model T engine. Only a few ways of improving performance of the FFRE and spacecraft have been considered.

THERE'S MUCH WORK TO DO,

Lighting The Afterburner On A Fission Fragment Rocket Engine FY 13 Center Innovation Fund Study Award

The Next Step:

